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Abstract

We study two well‐known Ramsey‐type problems for

(vertex‐)ordered complete graphs. Two independent edges

in ordered graphs can be nested, crossing, or separated.

Apart from two trivial cases, these relations define six

types of subgraphs, depending on which one (or two) of

these relations are forbidden. Our first target is to refine a

remark by Erdős and Rado that every 2‐coloring of the

edges of a complete graph contains a monochromatic

spanning tree. We show that forbidding one relation we

always have a monochromatic (nonnested, noncrossing,

and nonseparated) spanning tree in a 2‐edge‐colored
ordered complete graph. On the other hand, if two

relations are forbidden, then it is possible that we have

monochromatic (nested, separated, and crossing) subtrees

of size only n~ 2∕ in a 2‐colored ordered complete graph

on n vertices. Some of these results relate to drawings

of complete graphs. For instance, the existence of a

monochromatic nonnested spanning tree in 2‐colorings of
ordered complete graphs verifies a more general conjec-

ture for twisted drawings. Our second subject is to refine

the Ramsey number of matchings, that is, pairwise

independent edges for ordered complete graphs.

Cockayne and Lorimer proved that for given positive

integers t n, , m t n n= ( − 1)( − 1) + 2 is the smallest

integer with the following property: every t‐coloring of the
edges of a complete graph Km contains a monochromatic

matching with n edges. We conjecture that this result can
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be strengthened: t‐colored ordered complete graphs onm

vertices contain monochromatic nonnested and also

nonseparated matchings with n edges. We prove this

conjecture for some special cases including the following.

• (i) Every t‐colored ordered complete graph on t + 3

vertices contains a monochromatic nonnested

matching of size two (n = 2 case). We prove it by

showing that the chromatic number of the subgraph

of the Kneser graph induced by the nonnested 2‐
matchings in an ordered complete graph on t + 3

vertices is t( + 1)‐chromatic.

• (ii) Every 2‐colored ordered complete graph on

n3 − 1 vertices contains a monochromatic nonsepa-

rated matching of size n (t = 2 case). This is the

hypergraph analog of a result of Kaiser and Stehlík

who proved that the Kneser graph induced by the

nonseparated 2‐matchings in an ordered complete

graph on t + 3 vertices is t( + 1)‐chromatic.

For nested, separated, and crossing matchings the

situation is different. The smallest m ensuring a

monochromatic matching of size n in every t‐coloring
is t n2( ( − 1)) + 1) in the first two cases and one less in

the third case.

KEYWORD S

crossing edges, geometric Ramsey, matching, monochromatic,
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1 | INTRODUCTION

An ordered graph G is a simple graph with V G m m( ) = [ ] = {1, 2, …, }. The vertex set is
considered with the natural ordering and the edges are denoted by i j( , ), where we always
assume i j< . The length of i j( , ) is j i− . Turán‐ and Ramsey‐type problems for ordered graphs
have been extensively studied, see surveys [4, 8, 17]. Independent edges in ordered graphs can
be classified as follows (see Figure 1).

• Edges a b( , ) and c d( , ) are crossing if either a c b d< < < or c a d b< < < .
• Edges a b( , ) and c d( , ) are nested if either a c d b< < < or c a b d< < < .
• Edges a b( , ) and c d( , ) are separated if either a b c d< < < or c d a b< < < .
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On the basis of the above, we call an ordered graph G noncrossing (resp., nonnested and
nonseparated) if it does not contain crossing (resp., nested and separated) independent edges.
Combinatorial objects arising from these relations, for example, overlap graphs, interval graphs,
and circle graphs have been extensively studied [6, 9]. The complementary notions are the
crossing, nested, and separated ordered graphs, where any two independent edges are crossing,
nested, or separated, respectively.

A matching in a graph is a set of pairwise independent edges. A matching with n edges is
denoted by Mn. In an ordered graph (in accordance with the previous definition) a matching
can be crossing, nested, or separated. A separated matching is equivalent to a set of pairwise
disjoint intervals. Crossing and nested matchings relate to drawings of graphs. If we consider
the vertices of an ordered graph G drawn on a convex curve in the natural order, and edges
drawn as straight‐line segments, then two independent edges cross if and only if they form a
crossing pair. On the other hand, there is a drawing, called twisted drawing [12], where two
independent edges cross if and only if they form a nested pair, see Figure 2.

Here we are interested in possible extensions of two well‐known Ramsey‐type remarks from
complete graphs to ordered complete graphs. We use the shorthand t‐coloring for t‐edge‐
coloring.

Remark 1.1. Every 2‐colored complete graph has a monochromatic spanning tree.

FIGURE 1 Crossing, nested, and separated edges in an ordered graph.

FIGURE 2 Ordered graph and its twisted and convex drawing.
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Remark 1.2. Every 2‐colored complete graph K n3 −1 contains a monochromatic
matching Mn and this is not true for K n3 −2.

Remark 1.1 is from Erdős and Rado. For many extensions, see the survey [11]. Károlyi,
Pach, and Tóth [14] generalized both remarks to geometric graphs that are graphs drawn in the
plane with straight‐line segments as edges.

Theorem 1.3 (Károlyi et al. [14]). Every 2‐colored complete geometric graph has a
monochromatic plane spanning tree.

Theorem 1.4 (Károlyi et al. [14]). Every 2‐colored complete geometric graph K n3 −1

contains a monochromatic plane matching Mn.

Here a plane subgraph is one, whose edges in the embedding do not have common internal
points. Remark 1.2 is the easiest case (t r= 2, = 2) of the following theorem (conjectured by
Erdős).

Theorem 1.5 (Alon, Frankl, and Lovász [2]). Assume that t k r, , are positive integers and
n t k kr= ( − 1)( − 1) + . In every t‐coloring of the edges of the complete r‐uniform
hypergraph Kn

r there is a monochromatic matching with k edges (and n is the smallest
possible for which the statement holds).

The case r = 2 in Theorem 1.5 is due to Cockayne and Lorimer [7], the case t = 2 is in [1,
10]. The case k = 2 is the breakthrough of Lovász solving Kneser's conjecture [15].

In this paper, we study how the statements of Remarks 1.1 and 1.2 change if complete
graphs are replaced by ordered complete graphs. We consider all six cases (crossing, nested,
separated, and their negations) for spanning trees and for matchings. In case of matchings, we
address the t‐color case also. We present our results in Section 2 and in Section 3 we give the
proofs.

2 | RESULTS

2.1 | Monochromatic spanning trees

Theorem 2.1. In every 2‐coloring of the ordered complete graph, there exists

(i) a monochromatic noncrossing spanning tree.
(ii) a monochromatic nonnested spanning tree.
(iii) a monochromatic nonseparated spanning tree.

Part (i) is a consequence of Theorem 1.3 and it was already observed by Bialostocki and
Dierker [5]. We give a very short direct proof. Part (ii) implies that every 2‐coloring of the
twisted drawing of the complete graph has a monochromatic plane spanning tree. This verifies
a special case of the conjecture in [3], that in every 2‐coloring of any simple drawing of the
complete graph, there is a monochromatic plane spanning tree. Apart from geometric graphs
(Theorem 1.3) the conjecture is verified for cylindrical drawings [3].

4 | BARÁT ET AL.

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23058 by W

est V
irginia U

niversity, W
iley O

nline L
ibrary on [02/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



We show that parts (i) and (ii) in Theorem 2.1 cannot be improved.

Proposition 2.2. (i) There is a 2‐coloring of the ordered complete graph on n[ ], which
does not contain a noncrossing monochromatic subgraph with n edges.

(ii) There is a 2‐coloring of the ordered complete graph on n[ ], which does not contain a
nonnested monochromatic subgraph with n edges.

The situation is different in the nonseparated case.

Proposition 2.3. In any 2‐coloring of the ordered complete graph on n[ ], there is a
nonseparated monochromatic subgraph of n 82 ∕ edges.

When two of the relations are forbidden, the analog of Theorem 2.1 is the following.

Theorem 2.4. Let G be an ordered complete graph on n[ ].

(i) There exists a 2‐coloring of G, which does not contain a monochromatic separated
subtree with more than + 1

n

2
  vertices, where n 4≥ .

(ii) There exists a 2‐coloring ofG, which does not contain a monochromatic nested subtree
with more than n + 4

2
vertices.

(iii) There exists a 2‐coloring of G, which does not contain a monochromatic crossing
subtree with more than n + 3

2
vertices.

Theorem 2.4 is close to optimal since a monochromatic star on at least + 1
n − 1

2
  vertices

always exists in a 2‐coloring (by the pigeonhole principle).

2.2 | Nonnested matchings

Remark 1.2 probably remains true for nonnested matchings.

Conjecture 2.5. Every 2‐colored ordered complete graph on n[3 − 1] contains a
monochromatic nonnested matching of size n.

The statement of Conjecture 2.5 trivially holds if n3 − 1 is replaced by n4 − 2. Indeed, there
are n2 − 1 independent separated edges and by the pigeonhole principle in any 2‐coloring of
these edges, we find a monochromatic Mn. We can improve this only by one. Theorem 2.18
guarantees even a monochromatic crossing Mn in n[4 − 3].

There are two different types of extremal graphs containing no Mn. The first is the complete
graph K n2 −1 and the second is a graph where all edges are incident to a set of n − 1 vertices. The
extremal configuration for Remark 1.2 combines them to obtain a matching lower bound: a
2‐coloring of K n3 −2 is obtained from a red K n2 −1 and n − 1 further vertices incident to blue

BARÁT ET AL. | 5
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edges. As a support of Conjecture 2.5, we show in the next result that there is no better way to
combine these colorings in ordered complete graphs if we allow nested pairs.

Theorem 2.6. If an ordered complete graph on n[3 − 1] contains either (i) a red K n2 −1 or
(ii) a blue Kn n−1,2 as a subgraph, then there is a monochromatic nonnested Mn.

Somewhat surprisingly we found that the proof of Theorem 2.6 is not easy at all (this may
raise some doubt whether Conjecture 2.5 is true). In spite of that we extend it further.

Theorem 2.7 (Cockayne and Lorimer [7]). Assume that n n1 t1≤ ≤ ⋯≤ and
m n n= ( − 1) + + 1i

t
i t=1 . Then every t‐colored complete graph Km contains a

matching of size ni for some i t1 ≤ ≤ , monochromatic in color i.

We conjecture that Theorem 2.7 remains true for nonnested matchings as well, extending
Conjecture 2.5.

Conjecture 2.8. Assume that n n1 t1≤ ≤ ⋯≤ and m n n= ( − 1) + + 1i
t

i t=1 . Then
every t‐colored ordered complete graph on m[ ] contains a nonnested matching of size ni for
some i t1 ≤ ≤ , monochromatic in color i.

Let R k l*( , ) denote the minimum positive integer n such that in any 2‐coloring of the
ordered complete graph on n[ ], there is either a red nonnested Mk or a blue nonnested Ml. We
support Conjecture 2.8 with the following three results.

Theorem 2.9. For n 2≥ , we have R n n*(2, ) = 2 + 1.

Theorem 2.10. For n 3≥ , we have R n n*(3, ) = 2 + 2.

Theorem 2.11. Every t‐colored ordered complete graph on t[ + 3] contains a
monochromatic nonnested M2.

Note that Theorem 2.11 extends the k r= = 2 case of Theorem 1.5. We prove the statement
by showing that the chromatic number of the subgraph of the Kneser graph induced by the
nonnested 2‐matchings in an ordered complete graph on t[ + 3] is t‐chromatic. This is a result
parallel to the one of Kaiser and Stehlík [13], who proved this for nonseparated 2‐matchings of
a t‐colored ordered complete graph on t[ + 3].

2.3 | Noncrossing and nonseparated matchings

The analog of Conjecture 2.5 for noncrossing matchings is true. This follows from a more general
theorem by Károlyi, Pach, and Tóth [14]. We give a very simple direct proof in our special case.

Theorem 2.12. Every 2‐colored ordered complete graph on n[3 − 1] contains a
monochromatic noncrossing Mn.

The analog of Theorem 2.11 is not true for noncrossing matchings.

6 | BARÁT ET AL.
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Proposition 2.13. For t 3≥ there is a t‐coloring of the ordered complete graph on t[ + 3]

containing crossing monochromatic matchings only.

The analog of Theorem 2.11 is true for nonseparated matchings. In fact this follows from a result
of Kaiser and Stehlík [13] who found an edge‐critical subgraph of the Schrijver graph. The vertices of
their graph Gt are (cyclically nonconsecutive) pairs of t[ + 3] and all of the edges are between
crossing or nested pairs. They show that Gt is t + 1‐chromatic and this implies the following.

Corollary 2.14 (Kaiser and Stehlík [13]). Every t‐coloring of the ordered complete graph
on t[ + 3] contains a nonseparated monochromatic matching M2.

Corollary 2.14 proves that Conjecture 2.8 is true for nonseparated matchings as well in the
n = 2 case. It is also true in the t n n n= 2, = =1 2 case.

Theorem 2.15. Every 2‐colored ordered complete graph on n[3 − 1] contains a
monochromatic nonseparated Mn.

Theorem 2.15 easily implies an extension to the nonsymmetric case.

Corollary 2.16. Assume that n n1 1 2≤ ≤ and m n n= 2 + − 12 1 . Then every 2‐colored
ordered complete graph on m[ ] contains either a nonseparated matching of size n1 in color 1
or a nonseparated matching of size n2 in color 2.

2.4 | Nested, crossing, and separated matchings

In Sections 2.2 and 2.3 we investigated matchings in ordered graphs forbidding one of the three
possible mutual positions of independent edges. Here we look at the complementary case, where
two possibilities are forbidden. Let R t n R t n R t n( , ), ( , ), ( , )nest cr sep be the smallest m such that
every t‐coloring of the edges of the ordered complete graph on m[ ] there is a monochromatic
nested, crossing, and separated matching, respectively, of size n. It turns out that in two cases the
Ramsey numbers are equal to their trivial upper bound and in one case it is one smaller.

Theorem 2.17. For t n, 2≥ we have R t n t n( , ) = 2( ( − 1) + 1)nest .

Theorem 2.18. For t n, 2≥ we have R t n t n( , ) = 2 ( − 1) + 1cr .

Theorem 2.19. For t n, 2≥ we have R t n t n( , ) = 2( ( − 1) + 1)sep .

3 | PROOFS

3.1 | Spanning trees

Proof of Theorem 2.1. (i) As already mentioned in the introduction, this part is a direct
consequence of Theorem 1.3. Here we give a very easy direct proof, by induction on n, the
number of vertices. For n = 1, 2, the statement is trivial. Suppose that n > 2 and the

BARÁT ET AL. | 7
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statement holds for smaller values. If all edges i i( , + 1), i n= 1, …, − 1 have the same
color, then we are done, they form the desired spanning tree. Otherwise there is an i,

i n1 < < such that i i( − 1, ) and i i( , + 1) have different colors. Delete vertex i. The
remaining 2‐colored complete graph has a monochromatic noncrossing spanning tree.
Now add vertex i together with edge i i( − 1, ) or i i( , + 1), and we are done.

(ii) Again, the proof is by induction on n. The statement is trivial for n = 1, 2. Suppose
n > 2, and the statement holds for every value smaller than n. Consider the ordered
complete graph on n[ ] and any 2‐coloring c of the edges. We may assume the edge (1, 2) is
blue. If i(1, ) is blue for every i, i n2 ≤ ≤ , then we are done, these edges form a blue,
nonnested spanning star. Otherwise, let s be the smallest number such that s(1, ) is red.
We now change the coloring c to c ̃ as follows: we recolor each edge induced by s[ − 1]

blue, and keep c otherwise. Consider the coloring c ̃ on n[2, ] and apply the induction
hypothesis.

Suppose first that we find a blue spanning tree B without nested edges. We can find a
blue nonnested spanning tree in the original 2‐colored graph the following way. Delete
the edges in B induced by s[2, − 1]. The resulting graph can also be found in the original
coloring c. Now add the blue edges s(1, 2), (1, 3), …, (1, − 1). The obtained graph is
connected and spanning, so we can remove some edges to get a spanning tree. It does
not contain a nested pair either, since B was nonnested, and the edges

s(1, 2), (1, 3), …, (1, − 1) can form a nested pair only with edges induced by s[2, − 1],
but they were deleted.

Suppose now that we found a red spanning tree R on n2, …, . It cannot contain any
edges induced by s[2, − 1] since they are blue. So, R can also be found in the original
coloring c. Simply add edge s(1, ), and we have a red nonnested spanning tree.

(iii) Again, the proof is by induction on n. The statement is trivial for n = 1, 2, suppose
that n > 2, and the statement holds for every value smaller than n. Consider the ordered
complete graph on n[ ] and any 2‐coloring c of the edges. Assume the edge n(1, ) is blue. If

i(1, ) is blue for every i, i n2 ≤ ≤ , then we are done, these edges form a blue, nonseparated
spanning star. Otherwise, let s be the largest number such that s(1, ) is red. We now change
the coloring c to c ̃ as follows: we recolor each edge induced by s n[ + 1, ] blue, and keep c
otherwise. Consider the coloring c ̃ on n[2, ] and apply the induction hypothesis.

Suppose first that we find a blue spanning tree B without separated edges. Delete the
edges of B induced by s n[ + 1, ]. Let B′ be the resulting graph. Just like in the previous
case, B′ can also be found in coloring c. Now add the blue edges s n(1, + 1), …, (1, ). The
obtained graph is connected and spanning, so we can remove some edges to get a blue
spanning tree. We have to show that it is nonseparated. Since B was nonseparated, B′ is
also nonseparated. So its edges, considered as intervals, have a common vertex p. But for
all edges i j( , ) of B′, i s≤ , therefore, we can assume that p s≤ . Now the edges

s n(1, + 1), …, (1, ) also contain p. Therefore, the blue spanning tree we got is
nonseparated.

Suppose now that we found a red spanning tree R on n2, …, . Now R does not contain
any edge induced by s n[ + 1, ], so it can also be found in coloring c. Now simply add edge

s(1, ), and we get a nonseparated red spanning tree. This concludes the proof of
Theorem 2.1. □

Proof of Proposition 2.2. (i) Color all edges i i( , + 1) blue, for i n1 − 1≤ ≤ , all other
edges red. Obviously, the statement holds for the blue edges. Let H be a noncrossing

8 | BARÁT ET AL.
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subgraph with red edges. Consider the convex drawing of Kn, where the blue edges are on
the outer cycle. Now H becomes a plane subgraph on the convex drawing. Let us add all
edges of the outer cycle (n − 1 blue and possibly one red) to H to get H′. It is still an
outerplanar graph. Therefore, H′ has at most n2 − 3 edges, n − 1 of them are blue. Thus
H can have at most n − 2 edges.

(ii) Color the edge i j( , ) blue if i j+ is even and red, if i j+ is odd. For the red edges,
the value of i j+ can have at most n − 1 different values. So, among n red edges there are
two with i j i j+ = ′ + ′, therefore, these edges are nested. The argument is the same for
the blue edges. □

Proof of Proposition 2.3. Consider all edges i j( , ) with i n j2 < ≤ ∕ , these edges are
pairwise nonseparated, and at least half of them have the same color. □

Proof of Theorem 2.4. (i) Color all edges i j( , ) with i n j2 < ≤ ∕ red and all other edges
blue. Clearly a blue subtree has at most n

2
  vertices. Since n 4≥ , a red subtree must be a

star. Otherwise, we find a red path with 3 edges, and there are crossing or nested edges.
However, a red star can have at most + 1

n

2
  vertices.

(ii) Color the edge i j( , ) blue if i j+ is even and red, if i j+ is odd. Let X Y, denote the
set of odd and even vertices ofG, respectively. The subgraph consisting of blue edges has
two almost equal components, thus any blue subtree in G has at most n

2
  vertices. Let T

be a red nested subtree. Among all vertices of degree 1 inT , select a vertex i for which the
edge e of T incident to i is as short as possible. We assume that e i j i X j Y= ( , ), ,∈ ∈ ,
our arguments apply for the other cases as well. Set

A v V G v i A v V G i v j A v V G j v= { ( ) : < }, = { ( ) : < < }, = { ( ) : < }.1 2 3∈ ∈ ∈

Claim 3.1. For any A Yℓ 2∈ ∩ we have V Tℓ ( )∉ . For any X Aℓ , ℓ + 1 1∈ ∈ we
have V T{ℓ, ℓ + 1} ( ) 1 ∩ ≤ . Similarly, for any X Aℓ , ℓ − 1 3∈ ∈ we have

V T| {ℓ − 1, ℓ} ( ) | 1∩ ≤ .

To prove the first statement, suppose for some A Yℓ 2∈ ∩ that V Tℓ ( )∈ . There is a
(nested) path P k j= ℓ, , …, in T , that cannot contain i (because i has degree one). Since
there is no edge crossing i j( , ), the path P must be completely in i j[ + 1, ]. Now consider
the longest path Q in T from ℓ, which is edge‐disjoint from P. This is also in i j[ + 1, ].
Either ℓ or the other endpoint of Q must be a degree 1 vertex of T , and the edge of T
incident to it must be shorter than i j( , ), a contradiction.

To prove the second statement, suppose that Aℓ, ℓ + 1 1∈ are both in V T( ), where
Xℓ ∈ . Since no edge of T can cross or be separated from i j( , ), any path of T from a

vertex in A1 to j must alternate between vertices of A1 and A3 before reaching j (a 1‐edge
path from A X1 1∩ to j is possible). However, the path P from ℓ to j is internally vertex‐
disjoint from any pathQ from ℓ + 1 to j because ℓ + 1 and j have the same parity. Since
Q has at least two edges, some of them must cross an edge of the path P.

The proof of the third statement is similar to the second. Here the path P from ℓ to j

and the path Q from ℓ − 1 to j leads to contradiction, proving Claim 3.1.
We make the calculations based on Claim 3.1.

BARÁT ET AL. | 9
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V T
A A A A A A n

( ) 2 +
2

+
2

+
2

4 + + 1 + + + 1

2
=

+ 4

2
,1 2 3 1 2 3 




  




  


  




     
≤ ≤

finishing the proof of (ii).
(iii) We use the same coloring as in part (ii) and the same notations. As in (ii), any

blue subtree in G has at most n

2
  vertices. Let T be a red crossing subtree of G. We

distinguish two cases.
Case 1. There exists a red path in T with edges a i i b( , ), ( , ). Fix i, we may assume i X∈ .

Select the largest a i< and the smallest b i> such that a i i b( , ), ( , ) are edges of T .
Automatically a b Y, ∈ . Let S be the star defined by the red edges of T incident to i. Set

A v V G v a B v V G v b= { ( ) : < }, = { ( ) : > }.∈ ∈

By the choice of a and b, all edges of S go from i to A B a b{ } { }∪ ∪ ∪ .
Claim 3.2. For any z A V S B V S( ( )) ( ( ))∈ ⧹ ∪ ⧹ we have z V T( )∉ . For any

a i< ℓ < , Xℓ ∈ we have V T{ℓ, ℓ + 1} ( ) 1 ∩ ≤ . Similarly, for any i b X< ℓ < , ℓ ∈

we have V T{ℓ − 1, ℓ} ( ) 1 ∩ ≤ .

The first statement follows from the fact that no red edge can be incident to z because
it would be either separated or properly cover one of the red edges a i i b( , ), ( , ).

To prove the second statement, suppose there is a (crossing) path P from ℓ to some
vertex x of V S( ). Since the edges of P must cross both a i( , ) and i b( , ), the path P visits
even vertices larger than i and odd vertices smaller than i. It cannot jump to a vertex v
larger than b, since that edge would contain i b( , ). Therefore, x b= . There is also a pathQ
from ℓ + 1 to V S( ) and by a similar reasoning it must end in a. However, the first edge

q(ℓ + 1, )1 ofQ must cross the first edge p(ℓ, )1 of P, hence p q<1 1. Now the second edge
p p( , )2 1 of P satisfies p < ℓ2 , otherwise the edge p p( , )2 1 is contained in q(ℓ + 1, )1
forming a nested pair. If we continue this way, the last edge of P, the one incident to b
contains q(ℓ + 1, )1 . This is a contradiction, proving the second statement. The third
statement follows the same way by symmetry, proving the claim. □

The claim implies that

V T V S
b a A B b a n

( ) ( ) +
− − 2

2

+

2
+ 3 +

− − 2

2
=

+ 3

2
,       

≤ ≤

proving (iii) in Case 1.
Case 2. There is no red path in T with edges a i i b( , ), ( , ), for any a i b< < .
It follows that for any fixed vertex i, all incident edges go to the same direction. More

precisely, for any i, there are two possibilities:
(a) For all j, if j is adjacent to i in T , then j i< . In this case we say that i is of type R.
(b) For all j, if j is adjacent to i in T , then j i> . In this case we say that i is of type L.
Clearly, the left end‐vertex of every edge is of type L, the right end‐vertex is of type R. On the

other hand, the edges of T are red, therefore one end‐vertex is odd, and the other one is even.

10 | BARÁT ET AL.
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We may assume there is an odd vertex of type L. Since T is connected, it follows that every odd
(resp., even) vertex of T is of type L (resp., R).

On the other hand, each edge i j( , ) corresponds naturally to the open interval i j( , ). Since T
was crossing and for any fixed vertex, all incident edges go to the same direction, its edges
correspond to pairwise intersecting intervals. Hence all of them have a nonempty intersection.
This common intersection cannot be a vertex, so it contains an interval j j( , + 1) for some j.
It follows that T can contain only odd vertices of j[1, ] and only even vertices of j n[ + 1, ].
Therefore, T has at most + 1

n

2
vertices.

3.2 | Matchings

Proof of Theorem 2.6. (i) There is a red K n2 −1.
Let P p p p= { < < < }n1 2 2 −1⋯ be the set of vertices of a red K n2 −1 and

Q q q= { < < }n1 ⋯ be the set of the remaining vertices in an ordered complete graph
on n[3 − 1].

For an unordered pair p q{ , }i j , i n1 2 − 1≤ ≤ , j n1 ≤ ≤ , let π p q( , )i j denote the

number of vertices of P strictly between pi and qj.

We define a subgraph H of the (ordered) bipartite graph P Q[ , ] as follows. A pair
p q{ , }i j is an edge in H if and only if π p q n0 < ( , ) − 1i j  ≤ or π p q( , ) = 0i j  and i is odd.

Claim 3.3. If an edge e of H is red, then there exists a nonnested red matching Mn in
the ordered complete graph on n[3 − 1].

Proof of Claim 3.3. Let p q( , ) be a red edge of H . The symmetric case for q p( , ) is
literally the same. Let P1, P2, and P3 be the set of vertices of P smaller than p, between p

and q, and greater than q, respectively. Since P n − 12  ≤ , we have P P P+2 1 3     ≤ . It
follows that there is a decomposition P P P= ′ ″2 2 2∪ such that P P′2 1   ≤ , P P− ′1 2    is even,
P P″2 3   ≤ , P P− ″3 2    is even.

We can select a nonnested matching on the first P P− ′1 2    vertices of P1, a nonnested
matching between the last P′2  vertices of P1 and P′2 , a nonnested matching between the
first P″2  vertices of P3 and P″2 , and a nonnested matching on the last P P− ″3 2    vertices of
P3. These red edges, together with p q( , ), form a red nonnested matching of G. This
matching uses all vertices of P and one vertex of Q for a total of n2 vertices and thus n
edges. □

By the claim we can assume for the rest of the proof that all edges of H are blue. We
find a nonnested blue Mn in H by the following algorithm. In what follows, j is an index
depending on another index i, therefore we use j i( ). The output of the algorithm is the
matching p q i n{{ , } : [ ]}i j i( ) ∈ .

NONNESTED H ‐MATCHING

STEP 0. i 0≔ , j (0) 0≔ .
STEP 1. If i n= , then go to STEP 6.
STEP 2. Let i i + 1≔ .
STEP 3. If q p E H{ , } ( )i j i( −1)+1 ∈ then let j i j i( ) = ( − 1) + 1. Go to STEP 1.

BARÁT ET AL. | 11
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STEP 4. If π q p( , ) = 0i j i( −1)+1 and j i( − 1) + 1 is even, then let j i j i( ) = ( − 1) + 2. Go

to STEP 1.
STEP 5. If π q p n( , )i j i( −1)+1 ≥ , then let j i( ) be the smallest number j with

j i j n( − 1) < 2 − 1≤ and π q p n( , ) <i j . (We shall prove in Claim 3.4 that q p>i j i( −1)+1

thus j i( ) is well defined.) Go to STEP 1.
STEP 6. The edge set M q p i n= {{ , } : 1 }n i j i( ) ≤ ≤ is the output of the algorithm. The

algorithm ends here.
We prove that Mn is a nonnested matching in H .
Assume first that STEP 5 was never executed by the algorithm. This implies that

j (1) = 1, and j i i j i i( ) − ( − 1) − ( − 1) + 1   ≤ , therefore, j n n( ) 2 − 1≤ . Moreover, if
q p E H{ , } ( )i j i( −1)+1 ∉ in STEP 3, then STEP 4 increases j i( − 1) + 1 by one, from even to

odd, thus q p E H{ , } ( )i j i( −1)+1 ∈ upon returning to STEP 3. Therefore all edges of Mn are in

H . Since the algorithm ensures that for i i< ′ we have j i j i( ) < ( ′), no two edges of Mn are
nested.

Assume next that the algorithm executed STEP 5 at some point. Let i I= at the first
execution of STEP 5.

Claim 3.4. q p>I j I( −1)+1.

Proof of Claim 3.4. Suppose to the contrary that q p<I j I( −1)+1. Since

π q p n( , )I j I( −1)+1 ≥ , we know q p<I j I n( −1)− +1. Let j I n j j I( − 1) − + 1 < ( − 1)≤ , and

suppose that we arrived to pj at the stage i i= ′. Then q q p p< < <i I j I n j′ ( −1)− +1 ,

therefore, π q p n1 ( , ) − 1i j′≤ ≤ by the definition of I , so q p E H{ } ( )i j′ ∈ , consequently

j i j( ′) = . In other words, all vertices pj, j I n j j I( − 1) − + 1 < ( − 1)≤ , are paired to

some qi in Mn. In particular, for some i′, j i j I n( ′) = ( − 1) − + 2. But j (1) = 1, so i′ > 1.
So we have least n qis with i I< , a contradiction since the algorithm stops for i n= . □

By Claim 3.4, STEP 5 defines j I( ) such that p p q< <j I j I I( −1)+1 ( ) and

π p q n( , ) = − 1j I I( ) . Observe that if p q<j i i( ) and π p q( , ) 2j i i( ) ≥ for some i, then

p q<j i i( +1) +1 and π p q π p q( , ) ( , ) − 1j i i j i i( +1) +1 ( )≥ . Therefore, the algorithm finds a pair

for q q, …,I I+1 ′ where I n I n′ = min( , + − 2). This finishes the proof unless I = 1. In that
case, we have π p q( , ) 1j n n( −1) −1 ≥ . So, if j n( − 1) + 1 is odd, then the algorithm sets

j n j n( ) = ( − 1) + 1. If j n( − 1) + 1 is even, then j n n( − 1) + 1 2 − 2≤ , so the
algorithm sets j n j n( ) = ( − 1) + 2. This concludes the proof of part (i). □

(ii) There is a blue K n n2 , −1.

Lemma 3.5. If the vertices of an ordered graph G are colored black and white so that
there are at leastm black and at leastm white vertices, thenG has a nonnested black–white
matching of size m.

Proof of Lemma 3.5. Let b b b< < < m1 2 ⋯ be m black and w w w< < < m1 2 ⋯ be m
white vertices in increasing order. Now the edges e w b=i i i, i m= 1, …, give the desired
matching. Indeed, if an interval defined by ei contains an interval defined by ej, then
either w w<i j and b b>i j or w w>i j and b b<i j, and both cases are impossible. □

12 | BARÁT ET AL.
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Set P p p p= { < < < }n1 2 2⋯ and Q q q= { < < }n1 −1⋯ and let P Q[ , ] be the complete
bipartite blue subgraph in the ordered 2‐colored complete graph on n[3 − 1].

Claim 3.6. If the edge e p p= ( , )i i n+ is blue for some i n[ ]∈ , then there exists a
nonnested blue matching Mn.

Proof of Claim 3.6. Let A p p= { , …, }i1 −1 and B p p= { , …, }i n n+ +1 2 . Observe that
A B Q n+ = = − 1      . Partition Q into three parts,

Q Q p Q Q p p Q Q p n= [1, − 1], = [ + 1, − 1], = [ + 1, 3 − 1].i i i n i n1 2 + 3 +∩ ∩ ∩

We have Q Q Q Q Q Q n A B( + ) + ( + ) = + − 1 = +1 2 2 3 2               ≥ . Therefore,
either Q Q A+1 2     ≥ or Q Q B+2 3     ≥ . By symmetry we may assume the former.
Let Q′ be the first A  element of Q. There are two possibilities.

If p q<i i, then we apply Lemma 3.5 with the black–white set pairs A Q, ′ (with
m A Q= = ′   ) and B Q Q, ′⧹ (with m B Q Q= = ′   ⧹ ). We get two nonnested blue
matchings M M,A B   . The edges of MA  are separated from the edges of MB , so M MA B  ∪
is a nonnested blue matching with n − 1 edges. The edges ofMA  are either completely to
the left of e or crossing e from the left. Similarly, the edges ofMB  are either completely to
the right of e or crossing e from the right. Therefore M M eA B  ∪ ∪ is a nonnested blue
matching with n edges, proving the claim.

If q p<i i, then we apply Lemma 3.5 with the black–white set pairs A Q, ′, Q Q P( ′), ′1⧹

and Q Q B( ),1⧹ , where P p p′ = { , …, }i i n+1 + −1 . (Note that P n′ = − 1  .) We certainly get a
blue matching M of size A  from the first pair. However, the size of the other two
matchings can vary. Sincem Q Q P= ′ ′1   ⧹ ≤ , Lemma 3.5 gives a blue matching M′ from
Q Q( ′)1⧹ to the first m points of P′. Lastly, observe that from the assumption q p<i i we
have Q i − 11  ≥ , implying m Q Q n Q n i B= = − 1 − − =1 1     ⧹ ≤ , thus Lemma 3.5
gives a blue matching M″ from Q Q1⧹ to the first m points of B. (In a degenerate case,
Q Q1⧹ might even be empty.)

The edges of M are completely to the left of e. The edges of M′ are separated from M

and cross e from the left. The edges of M″ are separated from M . They are either
separated from the edges of M′ or cross. Lastly, they cross e from the right. Therefore,
M M M e′ ″∪ ∪ ∪ is a nonnested blue matching of size n. □

Proof of Theorem 2.9. We prove the upper bound by induction on n. The edges
(1, 3), (2, 5), (1, 4), (3, 5), (2, 4) form a crossing 5‐cycle in the ordered complete graph on
[5]. Therefore any 2‐coloring of this cycle contains a monochromatic crossing pair,
finishing the base step n = 2. For the inductive step, assume we have a 2‐coloring of the
ordered complete graph on n[2 + 1] for some n > 2. We want to find either a nonnested
red M2 or a nonnested blue Mn. If the edge (1, 2) or the edge n n(2 , 2 + 1) is blue, then we
find the requested matching by induction using the ordered complete graph spanned by
either n[3, 2 + 1] or n[1, 2 − 1]. Otherwise n n(1, 2), (2 , 2 + 1) are both red edges,
finishing the proof.

For the lower bound, consider the ordered complete graph on n[2 ]. We color each edge
spanned by n[2, 2 ] blue and each edge incident to 1 red. This coloring does not contain
two independent red edges or a blue Mn. □

BARÁT ET AL. | 13
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Proof of Theorem 2.10. We start with the upper bound. Assume there is a 2‐coloring of
the ordered complete graph on n[2 + 2] for n 3≥ . We want to find either a nonnested red
M3 or a nonnested blue Mn. Assuming n > 3, we show first the inductive step. As in the
previous proof, we can apply induction if the edge (1, 2) or the edge n n(2 + 1, 2 + 2) is
blue. Thus suppose that n n(1, 2), (2 + 1, 2 + 2) are both red edges. Consequently every
edge of the ordered complete graph K spanned by n[3, 2 ] is blue, otherwise we have the
required nonnested red M3. Note that V K n( ) = 2( − 1)  thus all maximal nonnested
matchings in K have size n − 1.

Consider the crossing matchingQ = (1, 3), (2, 4). If both edges ofQ are red, we have the
nonnested redM3 (adding the red edge n n(2 + 1, 2 + 2)) finishing the proof. If both edges of
Q are blue, then we have a nonnested blue Mn by extending Q with any nonnested blue
matching Mn−2 in K {3, 4}⧹ . Thus the edges of Q have different colors. Repeating the same
argument with the crossing matchingQ n n n n′ = (2 − 1, 2 + 1), (2 , 2 + 2) we conclude that
the edges of Q′ also have different colors. Observe that using the (blue) edges of K , we can
extend the blue edges of Q Q, ′ to a nonnested blue Mn (we only leave out the endvertices of
the red edges ofQ Q, ′) finishing the proof for n > 3. However, note that this proof works for
n = 3 too, provided that the edges n n(1, 2), (2 + 1, 2 + 2) are both red (or by symmetry,
both are blue).

Thus, in handling the case n = 3, we may assume that the edge (1, 2) is red and the
edge (7, 8) is blue. Moreover, if any edge of the triangle T spanned by {1, 2, 3} is blue,
then we consider the coloring of K8 restricted to the ordered complete graph on [4, 8]. By
Theorem 2.9 there is a monochromatic M2 and the red or the blue edge of T extends it to
a nonnested monochromatic M3. The same argument applies to the triangle T′ spanned
by {6, 7, 8} and we conclude that T is a red triangle and T′ is a blue triangle. If the
matching (3, 4)(5, 6) is monochromatic, then extending it with (1, 2) or (7, 8), and we get
a nonnested monochromatic M3. Otherwise we consider two cases.

Case (i). The edge (3, 4) is blue, and (5, 6) is red. Now either (2, 4) is blue or
(1, 3), (2, 4), (5, 6) is a nonnested red M3. Similarly, (5, 7) is red, otherwise we are done. If
(3, 6) is red, then (1, 2), (3, 6), (5, 7) is a nonnested red M3. Otherwise (2, 4), (3, 6), (7, 8)
is a nonnested blue M3.

Case (ii). The edge (3, 4) is red, and (5, 6) is blue. In this case {1, 2, 3, 4} spans a red K4

and {5, 6, 7, 8} spans a blue K4, otherwise we have a monochromatic M3. Consider the
crossing matchingM = (2, 5), (3, 6), (4, 7). Two edges ofM , say e f, have the same color. Set

x e f y e f= [2, 4] ( ), = [5, 7] ( ).⧹ ∪ ⧹ ∪

If e f, are red then x e f(1, ), , is a nonnested red matching, otherwise e f y, , ( , 8) is a
nonnested blue matching.

The lower bound is shown by the following 2‐coloring of the ordered complete graph
on n[2 + 1]. Each edge incident to 1 or 2 is red, and the edges induced by n[3, 2 + 1] are
blue. There is no red M3 or blue Mn. □

Proof of Theorem 2.11. Consider a t‐colored ordered complete graph K on t[ + 3]. We
define a graph Gt+3 as follows. The vertex set of Gt+3 is defined as a subset of edges of K :

V G i j i j t i j t( ) = {( , ) : 1 < − 1 + 2, ( , ) (1, + 3)}.t+3 ≤ ≤ ≠

14 | BARÁT ET AL.
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Two vertices of Gt+3, i j k l( , ), ( , ) form an edge if and only if they are crossing or
separated.

In fact, the graphGt+3 is a subgraph of the Schrijver graph [16] whose chromatic number
is t + 1. In the next lemma, we show that Gt+3 still has the same chromatic number. It is
nontrivial, since the largest clique size is t 2 ∕ . In fact we prove a bit more. We say that a
vertex of a graph is critical if its removal decreases the chromatic number. □

Lemma 3.7. χ G t( ) = + 1t+3 and the vertex t(2, + 3) is critical.

Proof. We prove the lemma by induction on t , starting from t = 2, whenG5 is the 5‐cycle
with vertices (1, 3), (2, 4), (3, 5), (1, 4), (2, 5), thus the Lemma is true. For the inductive
step, consider Gt+3 with t 3≥ and suppose to the contrary that it has a proper t‐coloring
C. We label the colors by elements of t[ ]. By the inductive hypothesis, all colors have to be
used on the vertices of the subgraphGt+2. Moreover, since t(2, + 2) is critical inGt+2 with
set of neighbors N t= {(1, 3), …, (1, + 1)} (in Gt+2), the colors on the set N t(2, + 2)∪

are all different, we may assume C i i((1, )) = − 2 for i t3 + 1≤ ≤ and
C t t((2, + 2)) = .

Define S t t t= {(3, + 3), …, ( + 1, + 3)} and observe the following about the coloring
C on Gt+3.

• (i) vertex t(2, + 3) is adjacent to all vertices of N thus C t t((2, + 3)) = ,
• (ii) vertex t(2, + 2) is adjacent to all vertices of S thus color t is not used on S,
• (iii) the bipartite subgraph N S[ , ] of Gt+3 is almost complete, only the edges from i(1, )

to i t( , + 3) are missing for i t3 + 1≤ ≤ . Using this and (ii), C is determined on S:
C i t C i i(( , + 3)) = ((1, )) = − 2.

These observations lead to contradiction because the vertex t(1, + 2) is adjacent to
S t{(2, + 3)}∪ , that is, colored by t distinct colors. This proves that χ G t( ) = + 1t+3 .

To show that the vertex v t= (2, + 3) is critical, remove v from Gt+3 and keep the
coloring C defined above on S. For i j t1 < + 2≤ ≤ , we can color vertex i j( , ) with color
j − 2. This provides a proper t‐coloring forG v−t+3 , proving the lemma (the criticality of
any vertex of Gt+3 follows also from [16]). □

Theorem 2.11 follows from Lemma 3.7, since the t‐coloring of K gives a t‐coloring of the
vertices of Gt+3. Since χ G t( ) = + 1t+3 there are two adjacent vertices of the same color, which
means that we have a nonnested M2 as desired.

Proof of Theorem 2.12. We prove by induction, the case n = 1 is obvious. Consider the
Hamiltonian path P P= n3 −1 with edge set i i i n{( , + 1) : [1, 3 − 2]}∈ in a 2‐colored
ordered complete graph on n[3 − 1]. If this path is monochromatic, then there is a
monochromatic matching of size n

n3 − 1

2
  ≥ . Otherwise, we have a subpath Q P⊂

consisting of two edges of different colors. Removing the vertices of Q, we can find by
induction a monochromatic Mn−1 in the remaining 2‐colored ordered complete graph on
n3 − 4 vertices. Since no edge ofMn−1 can cross an edge ofQ, we can extend Mn−1 by one
of the edges of Q to get a noncrossing matching as desired. □

BARÁT ET AL. | 15
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Proof of Proposition 2.13. The proof is by induction on t . Let t = 3. It suffices to find a 3‐
coloring of the ordered K6, where independent edges of each color class are crossing. A
solution is the following:

• (1, 2)(1, 3), (2, 3), (2, 4), (2, 5),
• (1, 4), (3, 4), (3, 5), (4, 5),
• (1, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6).

The induction step is trivial, just add a new vertex t + 4 and all edges adjacent to it get
color t + 1. □

Proof of Theorem 2.15. We prove by induction on n, the case n = 1 is obvious. For the
inductive step, assume there is a 2‐colored ordered complete graph on n[1, 3 − 1] for
some n > 1. Set A n B n n= [1, ], = [2 , 3 − 1]. If the complete bipartite graph A B[ , ] is
monochromatic, then we have a crossing or nested monochromatic Mn. Otherwise there
exists a path P3 with a red and a blue edge in A B[ , ]. By the inductive hypothesis, the
2‐colored ordered complete graph K on n V P[1, 3 − 1] ( )3⧹ contains a monochromatic
nonseparated matchingMn−1. We claim that no edge x y M( , ) n−1∈ can be separated from
either edge of P3. Indeed, since both edges of P3 are long, such an edge must satisfy
x y A, ∈ or x y B, ∈ . This implies x y n− < − 1  in K since at least one vertex is
removed from both A and B. Therefore, at most n − 3 edges ofMn−1 can be nonseparated
from the edge x y( , ), contradicting the definition of Mn−1, proving the claim.

Thus Mn−1 can be extended by the suitable edge of P3 to a monochromatic
nonseparated Mn. □

Proof of Corollary 2.16. Consider an arbitrary 2‐coloring of the edges of an ordered
complete graph onV m= [ ]wherem n n= 2 + − 12 1 . ExtendV toV m m n n′ = [ , + − ]2 1

and color all edges incident to V ′ with the second color. Applying Theorem 2.15 to the
2‐colored ordered complete graph on V V ′∪ (which has n3 − 12 vertices) we have a
monochromatic nonseparated M M= n2. If it is in the second color, we are done.
Otherwise we remove all edges of M incident to V ′ to get a matching in the first color
with size at least n1. □

Proof of Theorem 2.17. Here the upper bound is obvious: an ordered t‐colored complete
graph on t n[2( ( − 1) + 1)] contains t n( − 1) + 1 pairwise nested edges and the majority
color on them gives a monochromatic nested Mn.

The lower bound comes from the following recursive construction of a t‐colored
ordered complete graph Gm with m t n= 2 ( − 1) + 1, containing no monochromatic
nested Mn. For n = 1 the ordered complete graph K1 trivially works. Assume that Gm is
already defined for some n 1≥ . Define V G( )m+1 as A V G B( )m∪ ∪ , where

A a a B b b a a V G b b= { , …, }, = { , …, }, < < < ( ) < < < .t t t m t1 1 1 1⋯ ⋯

The edges of Gm+1 within V G( )m keep their color. For a A b B x V G, , ( )p q∈ ∈ ∈ let C
be the following coloring.
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C a a C b b C a b p q C a x p C

x b q

(( , )) = (( , )) = (( , )) = min{ , }, (( , )) = ,

(( , )) = .

p q q p p q p

q

Note that Gm+1 does not have monochromatic nested Mn+1 because its edges incident
to A B∪ do not contain a nested monochromatic M2, therefore the largest
monochromatic nested matching of Gm+1 must be an extension of a monochromatic
nested matching of Gm which has size at most n − 1 by the definition of Gm. □

Proof of Theorem 2.18. Set m t n= 2 ( − 1). The lower bound construction is based on
the following lemma. □

Lemma 3.8. The edge set of the ordered complete graph on t[2 ] can be partitioned into t
noncrossing spanning trees.

Proof. In fact, we partition the complete graph into noncrossing double stars. For i t[ ]∈

we define the spanning tree Ti as follows.

E T i i i t i t i t i t i t t i i

t

( ) = {( , + 1), …, ( , + ), ( + , + + 1)…, ( + , 2 ), …, ( + , − 1)

(mod 2 )}.

i

Looking at the convex drawing, it is immediate that the double stars Ti are
noncrossing, see Figure 3 for the case t = 3. □

Consider the edges of Ti as edges of color i. Then “blow up” each vertex i, i t1 2≤ ≤ by
replacing vertex i by a set Ai of n − 1 consecutive vertices in the convex drawing. This defines
the ordered graph G t n( , ) with t n2 ( − 1) vertices (with a convex drawing). The edge‐coloring
provided by Ti is extended by adding all edges between Ap and Aq with the color used on p q( , )

in Ti. The edges within the sets Ai are colored arbitrarily (with colors from t[ ]).

Claim 3.9. The t‐colored ordered Km defined above has no monochromatic crossing
matching Mn.

To prove the claim, suppose that M is a red crossing matching in Km. If an edge of M is
within some Ai then it can be crossed by at most n − 3 other edges of M . Thus we may assume
that all edges of M are edges of the “blow up” of the red double star. Since no two edges of a

FIGURE 3 Decomposition into noncrossing double stars.

BARÁT ET AL. | 17
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double star cross, for any two edges e f M, ∈ there exists Ai such that e A f A,i i∩ ∩ are both
nonempty. Moreover, since the double stars have no triangles, any two edges of M must
intersect the same Ai. Since A n= − 1i  , M has at most n − 1 edges, proving the claim and the
lower bound for Theorem 2.18.

For the upper bound consider a t‐colored ordered complete graph K K= m+1 represented
with its convex drawing. Since m + 1 is odd, the longest diagonals of K form a Hamiltonian
cycle H . The majority color has at least n= 2( − 1) + 1

m

t

+ 1  edges and among these edges

there are at least n which are pairwise nonconsecutive on H thus they form a monochromatic
crossing Mn.

Proof of Theorem 2.19. The upper bound is obvious: in a t‐coloring of an ordered
complete graph on t n[2( ( − 1) + 1)] there are t n( − 1) + 1 pairwise separated edges and
the majority color on them gives a monochromatic separated Mn.

The lower bound construction consists of t − 1 consecutive blocks A A, …, t1 −1 with
size n2 − 2 and an end‐block At with A n= 2 − 1t  . An edge i j( , ) is colored by k, where
i Ak∈ . There is no Mn (of any type) in color t and there is no separated Mn in color i for

i t1 <≤ either because at least two edges of Mn intersect Ai in one vertex, forming a
crossing or nested pair. □

4 | CONCLUSION, OPEN PROBLEMS

Here we concentrated on two Ramsey problems (connected subgraphs and matchings) in
ordered complete graphs. For connected graphs we got almost sharp results for 2‐colorings. It
would be interesting to see what happens for more colors. The main open problem is whether
the case r = 2 in Theorem 1.5 [7] remains true for nonnested and for nonseparated matchings
of ordered graphs. The positive answer for special cases is provided in Theorems 2.6, 2.9, 2.10,
2.11, 2.15, and Corollary 2.14.

Conjecture 4.1. Assume that t n, are positive integers and m t n n= ( − 1)( − 1) + 2 .
Then in every t‐coloring of the edges of the ordered complete graph Km there is

(i) a monochromatic nonnested matching with n edges,
(ii) a monochromatic nonseparated matching with n edges.

It is interesting to observe that while case (ii) of Conjecture 4.1 for 2 colors is true (and the
proof is easy), case (i) seems difficult, even for n = 4. Also, in this case we could decrease the
trivial upper bound n4 − 2 only by one.
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