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Definition (Independent Sets)

A set I ⊆ V(G) is called an independent set if no two vertices in I are adjacent.
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Preliminaries

Definition (MIS(G))

Let G be a graph. We define

MIS(G) := {M ⊆ V(G) : M is a maximal independent set.}

For general graph G(n),

• Enumeration of MIS(G) is known to be #P-complete

• Miller and Muller (1960):

MIS(G)≤


3n/3 if n ≡ 0 ( mod 3)

4.3n/3−1 if n ≡ 1 ( mod 3)

2.3n/3 if n ≡ 2 ( mod 3)

• Moon and Moser (1965), Erdős (1966): Bounding g(n) := the maximum number of
different sizes of MIS’s

n− logn−H(n)−O(1)≤ g(n)≤ n− logn
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Preliminaries

Definition (Grid-like graph)

Let Vi := {(i, j) : 1 ≤ j ≤ m}. A graph G is grid-like provided that

1. it is locally isomorphic to a square grid

2. Let Vi = {(i, j) : 1 ≤ j ≤ m}. For every 1 ≤ i1, i2 ≤ n,

G[Vi1 ]
∼= G[Vi2 ]

Definition (Global and Local Structure)

Given a grid-like graph G, let H denote the graph to which each subgraph G[Vi ] is isomorphic to. We call H the
local structure of G and each subgraph G[Vi ] to be a slice of G.

In this paper, H ∈ {Pm ,Cm}.
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Preliminaries

There are four particular grid-like graphs that we study. They are pictured below for m = 3 and
n = 4:

Fat Cylinder: FCm×n Thin Cylinder: TCm×n

Torus: Tm×n Möbius Strip: Mm×n
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Contributions

• Asymptotics of MIS(G) across several classes of grid-like graphs.

• Enumerating non-isomorphic MIS’s for small m.

• Finding the average size of MIS’s for small m.
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Transfer Matrices

Golin et al. (2005) surveyed a set of enumeration problems on grid graphs, grid-cylinders, and
grid-tori of fixed height, which can be modeled by the transfer matrix approach, including

• Hamiltonian Cycles

• Perfect Matchings

• Spanning Trees

• Cycle Covers

On such a grid-like graph to count S(m,n) objects, the method finds vectors a,b and a square
matrix A such that

|S(m,n)|= a⊤Anb
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Motivating Example

Let G2×n be formed from {1,2, . . . ,n}×{1,2}. Consider MIS(G2×n) and an element M.

1. There can be at most one vertex from each column in M

2. The first and last columns of M must include 1 vertex.

3. For every two adjacent columns, there is at least one vertex in M.

4. M has a unique dual, formed by reflecting its choice of vertices over the horizontal axis
between the two rows.
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Motivating Example

By (1) and (2), an MIS of MIS(G2×n) contains exactly one of the vertices in the last column.
Consider the sets which contain (n,2).

By (3), column n−1 is either empty or not.
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Motivating Example

By (1) and (2), an MIS of MIS(G2×n) contains exactly one of the vertices in the last column.
Consider the sets which contain (n,2).

By (3), column n−1 is either empty or not.

• Not empty:

· · ·

· · ·

· · ·

· · ·

1
2 MIS(G2×(n−1))
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Motivating Example

By (1) and (2), an MIS of MIS(G2×n) contains exactly one of the vertices in the last column.
Consider the sets which contain (n,2).

By (3), column n−1 is either empty or not.
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· · ·
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Motivating Example

By (1) and (2), an MIS of MIS(G2×n) contains exactly one of the vertices in the last column.
Consider the sets which contain (n,2).

By (3), column n−1 is either empty or not.

Thus, by (4),

|MIS(G2×n)|= 2

(
1
2
|MIS(G2×(n−1))|+

1
2
|MIS(G2×(n−2))|

)
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Motivating Example

By (1) and (2), an MIS of MIS(G2×n) contains exactly one of the vertices in the last column.
Consider the sets which contain (n,2).

By (3), column n−1 is either empty or not.

Thus, by (4),

|MIS(G2×n)|= 2

(
1
2
|MIS(G2×(n−1))|+

1
2
|MIS(G2×(n−2))|

)

With the initial conditions

|MIS(G2×1)|= 2 , |MIS(G2×2)|= 2

|MIS(G2×n)|= 2Fn
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States

If we can use an auxiliary digraph to model our problem, we can borrow the transfer matrix
framework for enumeration: a⊤Anb.

Definition (State of local structure)

Let H be the local structure of G. A state of H is an ordered pair (I,D) in which

1. I is an independent set of H such that H[V(H)\N[I]] is 2-colorable;

2. D, the deficit, is a color class of a 2-coloring of H[V(H)\N[I]]

We define U(I) := V(H)\N[I] to be the uncovered set of a state (I,D).

Definition (State orderings)

State (I′,D′) follows state (I,D) or provided that

1. I ∩ I′ = /0

2. D ⊆ I′

3. D′ = U(I′)\ I.
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State Definition Example

In this state,

H = P4

I = {b}

D = {d}

a

b

c

d

a

b

c

d

In this state,

H = P4

I = {b}

D =∅
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State Ordering Example

, , ,
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Auxiliary Digraphs

We construct a digraph that stores information about which states can follow which.

Definition (Map Digraph)

Let S(H) be the set of states of H. Let M(H) be the map digraph of G with

V(M(H)) := S(H) , E(M(H)) := {−−→s1s2 : (s1,s2) ∈ S(H)2,s1 ⊢ s2}

There is a bijection between the number valid state permutations with valid starting and ending
states and the number of MISs on G.

Note that the total number of walks of length n on this digraph overcount the number of MISs on
our base graph G. To filter out digraph walks with invalid starting and ending states, we create
another digraph to store this information.

Definition (Ticket Digraph)

Let T be the ticket digraph of G with

V(T ) := S(H) , E(T ) := {−−→s1s2 : (s1,s2) ∈ S(H)2, an MIS can start in state s1 and end in state s2}
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Transfer Matrix Application

Theorem (Transfer Matrix Application)

Let AM(H) be the adjacency matrix of M(H) and AT be the adjacency matrix of T . Then,

τ(n) = |MIS(G)|= AT ·An−1
M(H)

14



Map and Ticket Digraph Example

Let G have local structure P2. The map digraph of G is

P2 Map Digraph

15



Map and Ticket Digraph Example

We consider two global structures of G: path and cyclic. The corresponding ticket digraphs are

Global Path Structure

Global Cyclic Structure
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Map Digraph facts

Let Pm or Cm be the slice of a grid-like graph and let M be the map digraph of the slice of G.

• M is strongly connected with diameter at most 4.

• |V(M)| satisfies a linear recurrence and is Θ(λ m
1 ) for λ1 ≈ 1.75488.

• |E(M)| also satisfied a linear recurrence and is Θ(λ m
2 ) for λ2 ≈ 2.1781.

• For each v ∈ M, d+(v) = 2k for some k ∈ N0.

• ∆+(M(Pm)) = 2⌈
m
2 ⌉, ∆+(M(Cm)) = 2⌊

m
2 ⌋
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Enumeration



τ(n) is a linear recurrence

Theorem (τ(n) is a linear recurrence)

Let (M,T ) be the auxiliary digraphs of G on k. Let AM and AT be the adjacency matrices of M and T
respectively. Let f (x) = xk +ak−1xk−1 + . . .+a1x +a0 be the characteristic polynomial of AM . Then, τ

satisfies the recurrence

τ(n) =−ak−1τ(n−1)− . . .−a1τ(n− k +1)−a0τ(n− k)

Proof

• By the Cayley-Hamilton Theorem, AM satisfies the linear recurrence given by f .

An
M =−ak−1An−1

M − . . .−a1An−k+1
M −a0An−k

M

• Matrix dot product is linear.

τ(n) =−ak−1AT •An−1
M − . . .−a1AT •An−k+1

M −a0AT •An−k
M

τ(n) =−ak−1τ(n−1)− . . .−a1τ(n− k +1)−a0τ(n− k)

18
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Asymptotics

Recall that |MIS(G2×n)|= 2Fn. Because τ(n) = τ(n−1)+ τ(n−2), τ grows exponentially
with rate ϕ = 1+

√
5

2 . More specifically,

lim
n→∞

τ(n)
2√
5
·ϕn

= 1

Theorem (Existence of c, r )

Let m ∈ N. The sequences |MIS(Gm×n)|, |MIS(FCm×n)|, |MIS(TCm×n)|, |MIS(Tm×n)|, |MIS(Mm×n)| as
functions of n all obey linear recurrences. Moreover, for each sequence τ(n), there exists real numbers c > 0
and r > 1 such that

lim
n→∞

τ(n)
c · rn = 1
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Asymptotics

Proof:

Theorem (Perron (1907), Frobenius (1912))

Let A be a primitive square matrix. Then, A has a Perron-Frobenius eigenvalue r , i.e. an eigenvalue equal to
its spectral radius, such that the left and right eigenspaces of r are generated by single strictly positive vectors
w⃗⊤ and v⃗ respectively. Moreover

lim
n→∞

An

rn =
v⃗ w⃗⊤

w⃗ ⊤⃗v
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Asymptotics

Proof:

Theorem (Perron (1907), Frobenius (1912) - application)

AM is a primitive square matrix. Thus, AM has a Perron-Frobenius eigenvalue r , i.e. an eigenvalue equal to its
spectral radius, such that the left and right eigenspaces of r are generated by single strictly positive vectors
w⃗⊤ and v⃗ respectively. Moreover

lim
n→∞

An
M

rn =
v⃗ w⃗⊤

w⃗ ⊤⃗v

lim
n→∞

τ(n)
rn = lim

n→∞

AT •An
M

rn = AT • lim
n→∞

An
M

rn = AT • v⃗ w⃗⊤

w⃗ ⊤⃗v
= c
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Asymptotics

Theorem (Main Result)

Let H = Pm or Cm and let ϕ be a graph automorphism of H. Let r be the principle eigenvalue of the map
digraph M of H. Then,

lim
n→∞

|MIS((H□Pn+1)/ϕ)|
rn = 1

Proof:

• Note that quotienting out by the ϕ does not affect the map digraph. It only affects which
pairs of states an MIS can start and end in.

• When ϕ =id, an MIS which starts in state i must end in precisely state i after n steps
through M.

• Likewise, for any ϕ , an MIS which starts in state i must end in precisely state ϕ(i) after n
steps. Say in the following example, φ(vi) = vi+1.

• Thus, only the ticket digraph of G is affected.
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Theorem (Main Result)

Let H = Pm or Cm and let ϕ be a graph automorphism of H. Let r be the principle eigenvalue of the map
digraph M of H. Then,

lim
n→∞

|MIS((H□Pn+1)/ϕ)|
rn = 1

Proof:

• Let ATϕ
be the induced ticket digraph. It is a permutation matrix with 1s at (i,φ(i)).

Sufficient to show that c = 1.

c = ATϕ
• v⃗ w⃗⊤

w⃗ ⊤⃗v
= ∑

1≤i≤m

v⃗i w⃗ϕ(i)

w⃗ ⊤⃗v

• What does w⃗⊤
ϕ(i) look like?
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Asymptotics

Proof:

• What does w⃗⊤
ϕ(i) look like?

• The graph automorphism ϕ induces a permutation matrix P =

({
1 if j = ϕ(i)

0 otherwise

)
ij

.

• We show that the permutation matrix corresponding to ϕ commutes with the adjacency matrix of
the graph ϕ acts on.

(PA)ij =

(
∑
k

Pik Akj

)
ij

= Aϕ(i)j = Aiϕ−1(j) =

(
∑
k

Aik Pkj

)
ij

= (AP)ij

• We can show that w⊤P is a left eigenvector of A corresponding to the principle eigenvalue.

(w⊤P)A = w⊤(PA) = (w⊤A)P = rw⊤P = r ·w⊤P
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Asymptotics

Proof:

• What does w⃗ϕ(i) look like? (w⊤P is an eigenvector of A)

• Recall the dimension of the left eigenspace is 1, so

w⊤P = w⊤t for some t ∈ R

where w⊤ is the strictly positive generator of the left eigenspace.

• w⊤P permutes the elements of w⊤, so ∥w⊤P∥= ∥w⊤∥.

• Thus, t = 1. w⊤P = w⊤, and wϕ(i) = wi

• Therefore,

c = ATϕ
• v⃗ w⃗⊤

w⃗ ⊤⃗v
= ∑

1≤i≤m

v⃗ϕ(i)w⃗i

w⃗ ⊤⃗v

= ∑
1≤i≤m

v⃗i w⃗i

w⃗ ⊤⃗v
= 1
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Open Questions

Conjecture

For sufficiently large m,

lim
n→∞

|MIS(Gm×n)|
|MIS(FCm×n)|

> 1

Conjecture

The following sequence is monotonically increasing.{
lim
n→∞

|MIS(Gm×n)|
|MIS(FCm×n)|

}
m∈N

Thank you!
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Nice Argument

Recall that |MIS(G2×n)|= 2Fn.

• Can we count only those MISs which are distinct in terms of rotation and reflection?

• This is a good place to start in looking to form more precise arguments about symmetries.

Definition (NIMIS(G))

Two elements I, I′ are isomorphic if there exists a graph automorphism ϕ : G → G with ϕ(I) = I′ and
non-isomorphic if no such ϕ exists. Denote the set of non-isomorphic MISs on G by NIMIS(G).

• In general, we can use the group of symmetries of our graph to act on the set of MISs. The
number of distinct orbits of MIS(G) counts |NIMIS(G)|.
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Nice Argument

Recall that |MIS(G2×n)|= 2Fn.

Definition (Bit String Map)

Let ψ : MIS(G2×n)→{0,1}n be defined by

ψ(M)(i) =

{
1 if (i,1) ∈ M or (i,2 ∈ M)

0 if (i,1) ̸∈ M and (i,2 ̸∈ M)

for every 1 ≤ i ≤ n and every M ∈MIS(G2×n)

• Note ψ maps precisely 2 MISs to some element in its range. These MISs are duals (from
before).

Theorem

For n ≥ 3,

|NIMIS(G2×n)|=

{
1
2 (Fn +Fn/2) if n if even
1
2 (Fn +F(n+3)/2) if n if odd
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1
2 (Fn +F(n+3)/2) if n if odd
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Nice Argument

Recall that |MIS(G2×n)|= 2Fn.

Definition (Bit String Map)

Let ψ : MIS(G2×n)→{0,1}n be defined by
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Nice Argument

Theorem

For n ≥ 3,

|NIMIS(G2×n)|=

{
1
2 (Fn +Fn/2) if n if even
1
2 (Fn +F(n+3)/2) if n if odd

Proof (sketch, odd n):

• ψ(|MIS(G2×n)|) = Fn

• Size of orbit of an MIS must divide the group of symmetries on a rectangular grid
(Orbit-Stabilizer Theorem). An MIS must have either an orbit of size 2 or 4.

• Symmetric bit strings are exactly those with orbit 4.

• Double-count:

|NIMIS(G2×n)|=
1
2
(Fn +number of distinct symmetric strings)

• Number of distinct symmetric strings:

F(n+1)/2 +F(n−1)/2
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