Statistics of Maximal Independent Sets in Grid-like Graphs

Levi Axelrod Nathan Bickel Anastasia Halfpap Luke Hawranick Alex Parker Cole Swain January 27, 2025

Department of Mathematics Iowa State University

Preliminaries

Let G be a graph. We define

 $\mathsf{MIS}(G) := \{ M \subseteq V(G) : M \text{ is a maximal independent set.} \}$

Let G be a graph. We define

 $MIS(G) := \{M \subseteq V(G) : M \text{ is a maximal independent set.} \}$

For general graph G(n),

• Enumeration of MIS(G) is known to be #P-complete

Let G be a graph. We define

 $MIS(G) := \{M \subseteq V(G) : M \text{ is a maximal independent set.} \}$

For general graph G(n),

- Enumeration of MIS(G) is known to be #P-complete
- Miller and Muller (1960):

$$\mathsf{MIS}(G) \le \begin{cases} 3^{n/3} & \text{if } n \equiv 0 \pmod{3} \\ 4.3^{n/3-1} & \text{if } n \equiv 1 \pmod{3} \\ 2.3^{n/3} & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

Let G be a graph. We define

 $MIS(G) := \{M \subseteq V(G) : M \text{ is a maximal independent set.} \}$

For general graph G(n),

- Enumeration of MIS(G) is known to be #P-complete
- Miller and Muller (1960):

$$\mathsf{MIS}(G) \le \begin{cases} 3^{n/3} & \text{if } n \equiv 0 \pmod{3} \\ 4.3^{n/3-1} & \text{if } n \equiv 1 \pmod{3} \\ 2.3^{n/3} & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

 Moon and Moser (1965), Erdős (1966): Bounding g(n) := the maximum number of different sizes of MIS's

$$n - \log n - H(n) - O(1) \le g(n) \le n - \log n$$

Definition (Grid-like graph)

Let $V_i := \{(i,j) : 1 \le j \le m\}$. A graph *G* is **grid-like** provided that

- 1. it is locally isomorphic to a square grid
- 2. Let $V_i = \{(i, j) : 1 \le j \le m\}$. For every $1 \le i_1, i_2 \le n$,

 $G[V_{i_1}]\cong G[V_{i_2}]$

Definition (Grid-like graph)

Let $V_i := \{(i,j) : 1 \le j \le m\}$. A graph *G* is **grid-like** provided that

- 1. it is locally isomorphic to a square grid
- 2. Let $V_i = \{(i, j) : 1 \le j \le m\}$. For every $1 \le i_1, i_2 \le n$,

 $G[V_{i_1}]\cong G[V_{i_2}]$

Definition (Global and Local Structure)

Given a grid-like graph *G*, let *H* denote the graph to which each subgraph $G[V_i]$ is isomorphic to. We call *H* the **local structure** of *G* and each subgraph $G[V_i]$ to be a **slice** of *G*.

Definition (Grid-like graph)

Let $V_i := \{(i,j) : 1 \le j \le m\}$. A graph *G* is **grid-like** provided that

- 1. it is locally isomorphic to a square grid
- 2. Let $V_i = \{(i, j) : 1 \le j \le m\}$. For every $1 \le i_1, i_2 \le n$,

 $G[V_{i_1}]\cong G[V_{i_2}]$

Definition (Global and Local Structure)

Given a grid-like graph *G*, let *H* denote the graph to which each subgraph $G[V_i]$ is isomorphic to. We call *H* the **local structure** of *G* and each subgraph $G[V_i]$ to be a **slice** of *G*.

In this paper, $H \in \{P_m, C_m\}$.

Preliminaries

There are four particular grid-like graphs that we study. They are pictured below for m = 3 and n = 4:

Torus: $T_{m \times n}$

Möbius Strip: M_{m×n}

• Asymptotics of MIS(G) across several classes of grid-like graphs.

• Asymptotics of MIS(G) across several classes of grid-like graphs.

• Enumerating non-isomorphic MIS's for small m.

• Asymptotics of MIS(G) across several classes of grid-like graphs.

• Enumerating non-isomorphic MIS's for small m.

• Finding the average size of MIS's for small m.

Framework

Golin et al. (2005) surveyed a set of enumeration problems on grid graphs, grid-cylinders, and grid-tori of fixed height, which can be modeled by the *transfer matrix approach*, including

- Hamiltonian Cycles
- · Perfect Matchings
- Spanning Trees
- Cycle Covers

On such a grid-like graph to count S(m, n) objects, the method finds vectors a, b and a square matrix A such that

$$S(m,n)| = a^{\top} A^n b$$

1. There can be at most one vertex from each column in M

1. There can be at most one vertex from each column in M

- 1. There can be at most one vertex from each column in M
- 2. The first and last columns of *M* must include 1 vertex.

- 1. There can be at most one vertex from each column in M
- 2. The first and last columns of *M* must include 1 vertex.

- 1. There can be at most one vertex from each column in M
- 2. The first and last columns of *M* must include 1 vertex.
- 3. For every two adjacent columns, there is at least one vertex in M.

- 1. There can be at most one vertex from each column in M
- 2. The first and last columns of *M* must include 1 vertex.
- 3. For every two adjacent columns, there is at least one vertex in M.

- 1. There can be at most one vertex from each column in M
- 2. The first and last columns of M must include 1 vertex.
- 3. For every two adjacent columns, there is at least one vertex in M.
- 4. *M* has a unique dual, formed by reflecting its choice of vertices over the horizontal axis between the two rows.

By (3), column n-1 is either empty or not.

By (3), column n-1 is either empty or not.

· Not empty:

By (3), column n-1 is either empty or not.

Empty:

By (3), column n-1 is either empty or not.

Thus, by (4),

$$|MIS(G_{2\times n})| = 2\left(\frac{1}{2}|MIS(G_{2\times (n-1)})| + \frac{1}{2}|MIS(G_{2\times (n-2)})|\right)$$

By (3), column n-1 is either empty or not.

Thus, by (4),

$$|MIS(G_{2\times n})| = 2\left(\frac{1}{2}|MIS(G_{2\times (n-1)})| + \frac{1}{2}|MIS(G_{2\times (n-2)})|\right)$$

With the initial conditions

$$|MIS(G_{2\times 1})| = 2$$
, $|MIS(G_{2\times 2})| = 2$

$$|MIS(G_{2\times n})| = 2F_n$$

If we can use an auxiliary digraph to model our problem, we can borrow the transfer matrix framework for enumeration: $a^{\top}A^{n}b$.

States

If we can use an auxiliary digraph to model our problem, we can borrow the transfer matrix framework for enumeration: $a^{\top}A^{n}b$.

Definition (State of local structure)

Let H be the local structure of G. A state of H is an ordered pair (I, D) in which

- 1. *I* is an independent set of *H* such that $H[V(H) \setminus N[I]]$ is 2-colorable;
- 2. D, the **deficit**, is a color class of a 2-coloring of $H[V(H) \setminus N[I]]$

We define $U(I) := V(H) \setminus N[I]$ to be the *uncovered set* of a state (I, D).

States

If we can use an auxiliary digraph to model our problem, we can borrow the transfer matrix framework for enumeration: $a^{\top}A^{n}b$.

Definition (State of local structure)

Let H be the local structure of G. A state of H is an ordered pair (I, D) in which

- 1. *I* is an independent set of *H* such that $H[V(H) \setminus N[I]]$ is 2-colorable;
- 2. D, the **deficit**, is a color class of a 2-coloring of $H[V(H) \setminus N[I]]$

We define $U(I) := V(H) \setminus N[I]$ to be the *uncovered set* of a state (I, D).

Definition (State orderings)

State (I', D') follows state (I, D) or provided that

- 1. $I \cap I' = \emptyset$
- 2. $D \subseteq I'$
- 3. $D' = U(I') \setminus I$.

Definition (Map Digraph)

Let S(H) be the set of states of H. Let M(H) be the **map digraph** of G with

 $V(M(H)) := S(H) \quad , \quad E(M(H)) := \{\overrightarrow{s_1 s_2} : (s_1, s_2) \in S(H)^2, s_1 \vdash s_2\}$

Definition (Map Digraph)

Let S(H) be the set of states of H. Let M(H) be the **map digraph** of G with

$$V(M(H)) := S(H) \qquad , \qquad E(M(H)) := \{\overrightarrow{s_1 s_2} : (s_1, s_2) \in S(H)^2, s_1 \vdash s_2\}$$

There is a bijection between the number valid state permutations with valid starting and ending states and the number of MISs on *G*.

Definition (Map Digraph)

Let S(H) be the set of states of H. Let M(H) be the **map digraph** of G with

 $V(M(H)) := S(H) \qquad , \qquad E(M(H)) := \{\overrightarrow{s_1 s_2} : (s_1, s_2) \in S(H)^2, s_1 \vdash s_2\}$

There is a bijection between the number valid state permutations with valid starting and ending states and the number of MISs on *G*.

Note that the total number of walks of length *n* on this digraph overcount the number of MISs on our base graph *G*. To filter out digraph walks with invalid starting and ending states, we create another digraph to store this information.

Definition (Map Digraph)

Let S(H) be the set of states of H. Let M(H) be the **map digraph** of G with

 $V(M(H)) := S(H) \qquad , \qquad E(M(H)) := \{\overrightarrow{s_1 s_2} : (s_1, s_2) \in S(H)^2, s_1 \vdash s_2\}$

There is a bijection between the number valid state permutations with valid starting and ending states and the number of MISs on *G*.

Note that the total number of walks of length *n* on this digraph overcount the number of MISs on our base graph *G*. To filter out digraph walks with invalid starting and ending states, we create another digraph to store this information.

Definition (Ticket Digraph)

Let T be the ticket digraph of G with

V(T) := S(H), $E(T) := \{\overrightarrow{s_1 s_2} : (s_1, s_2) \in S(H)^2$, an *MIS* can start in state s_1 and end in state $s_2\}$

Theorem (Transfer Matrix Application)

Let $A_{M(H)}$ be the adjacency matrix of M(H) and A_T be the adjacency matrix of T. Then,

 $\tau(n) = |\operatorname{MIS}(G)| = A_T \cdot A_{M(H)}^{n-1}$

Map and Ticket Digraph Example

Let G have local structure P_2 . The map digraph of G is

P2 Map Digraph

We consider two global structures of G: path and cyclic. The corresponding ticket digraphs are

Global Path Structure

We consider two global structures of G: path and cyclic. The corresponding ticket digraphs are

Global Path Structure

Global Cyclic Structure

• *M* is strongly connected with diameter at most 4.

- *M* is strongly connected with diameter at most 4.
- |V(M)| satisfies a linear recurrence and is $\Theta(\lambda_1^m)$ for $\lambda_1 \approx 1.75488$.

- *M* is strongly connected with diameter at most 4.
- |V(M)| satisfies a linear recurrence and is $\Theta(\lambda_1^m)$ for $\lambda_1 \approx 1.75488$.
- |E(M)| also satisfied a linear recurrence and is $\Theta(\lambda_2^m)$ for $\lambda_2 \approx 2.1781$.

- *M* is strongly connected with diameter at most 4.
- |V(M)| satisfies a linear recurrence and is $\Theta(\lambda_1^m)$ for $\lambda_1 \approx 1.75488$.
- |E(M)| also satisfied a linear recurrence and is $\Theta(\lambda_2^m)$ for $\lambda_2 \approx 2.1781$.
- For each $v \in M$, $d^+(v) = 2^k$ for some $k \in \mathbb{N}_0$.

- M is strongly connected with diameter at most 4.
- |V(M)| satisfies a linear recurrence and is $\Theta(\lambda_1^m)$ for $\lambda_1 \approx 1.75488$.
- |E(M)| also satisfied a linear recurrence and is $\Theta(\lambda_2^m)$ for $\lambda_2 \approx 2.1781$.
- For each $v \in M$, $d^+(v) = 2^k$ for some $k \in \mathbb{N}_0$.
- $\Delta^+(M(P_m)) = 2^{\lceil \frac{m}{2} \rceil}, \Delta^+(M(C_m)) = 2^{\lfloor \frac{m}{2} \rfloor}$

Enumeration

Theorem ($\tau(n)$ is a linear recurrence)

Let (M, T) be the auxiliary digraphs of G on k. Let A_M and A_T be the adjacency matrices of M and T respectively. Let $f(x) = x^k + a_{k-1}x^{k-1} + \ldots + a_1x + a_0$ be the characteristic polynomial of A_M . Then, τ satisfies the recurrence

 $\tau(n) = -a_{k-1}\tau(n-1) - \ldots - a_1\tau(n-k+1) - a_0\tau(n-k)$

$\tau(n)$ is a linear recurrence

Theorem ($\tau(n)$ is a linear recurrence)

Let (M, T) be the auxiliary digraphs of G on k. Let A_M and A_T be the adjacency matrices of M and T respectively. Let $f(x) = x^k + a_{k-1}x^{k-1} + \ldots + a_1x + a_0$ be the characteristic polynomial of A_M . Then, τ satisfies the recurrence

$$\tau(n) = -a_{k-1}\tau(n-1) - \ldots - a_1\tau(n-k+1) - a_0\tau(n-k)$$

Proof

• By the Cayley-Hamilton Theorem, A_M satisfies the linear recurrence given by f.

$$A_M^n = -a_{k-1}A_M^{n-1} - \ldots - a_1A_M^{n-k+1} - a_0A_M^{n-k}$$

$\tau(n)$ is a linear recurrence

Theorem ($\tau(n)$ is a linear recurrence)

Let (M, T) be the auxiliary digraphs of G on k. Let A_M and A_T be the adjacency matrices of M and T respectively. Let $f(x) = x^k + a_{k-1}x^{k-1} + \ldots + a_1x + a_0$ be the characteristic polynomial of A_M . Then, τ satisfies the recurrence

$$\tau(n) = -a_{k-1}\tau(n-1) - \ldots - a_1\tau(n-k+1) - a_0\tau(n-k)$$

Proof

• By the Cayley-Hamilton Theorem, A_M satisfies the linear recurrence given by f.

$$A_M^n = -a_{k-1}A_M^{n-1} - \ldots - a_1A_M^{n-k+1} - a_0A_M^{n-k}$$

· Matrix dot product is linear.

$$\tau(n) = -a_{k-1}A_T \bullet A_M^{n-1} - \ldots - a_1A_T \bullet A_M^{n-k+1} - a_0A_T \bullet A_M^{n-k}$$

$\tau(n)$ is a linear recurrence

Theorem ($\tau(n)$ is a linear recurrence)

Let (M, T) be the auxiliary digraphs of G on k. Let A_M and A_T be the adjacency matrices of M and T respectively. Let $f(x) = x^k + a_{k-1}x^{k-1} + \ldots + a_1x + a_0$ be the characteristic polynomial of A_M . Then, τ satisfies the recurrence

$$\tau(n) = -a_{k-1}\tau(n-1) - \ldots - a_1\tau(n-k+1) - a_0\tau(n-k)$$

Proof

• By the Cayley-Hamilton Theorem, A_M satisfies the linear recurrence given by f.

$$A_{M}^{n} = -a_{k-1}A_{M}^{n-1} - \ldots - a_{1}A_{M}^{n-k+1} - a_{0}A_{M}^{n-k}$$

· Matrix dot product is linear.

$$\tau(n) = -a_{k-1}A_T \bullet A_M^{n-1} - \ldots - a_1A_T \bullet A_M^{n-k+1} - a_0A_T \bullet A_M^{n-k}$$

$$\tau(n) = -a_{k-1}\tau(n-1) - \ldots - a_1\tau(n-k+1) - a_0\tau(n-k)$$

Recall that $|MIS(G_{2\times n})| = 2F_n$. Because $\tau(n) = \tau(n-1) + \tau(n-2)$, τ grows exponentially with rate $\varphi = \frac{1+\sqrt{5}}{2}$. More specifically,

$$\lim_{n\to\infty}\frac{\tau(n)}{\frac{2}{\sqrt{5}}\cdot\varphi^n}=1$$

Recall that $|MIS(G_{2\times n})| = 2F_n$. Because $\tau(n) = \tau(n-1) + \tau(n-2)$, τ grows exponentially with rate $\varphi = \frac{1+\sqrt{5}}{2}$. More specifically,

$$\lim_{n\to\infty}\frac{\tau(n)}{\frac{2}{\sqrt{5}}\cdot\varphi^n}=1$$

Theorem (Existence of *c*, *r*)

Let $m \in \mathbb{N}$. The sequences $|MIS(G_{m \times n})|$, $|MIS(FC_{m \times n})|$, $|MIS(TC_{m \times n})|$, $|MIS(T_{m \times n})|$, $|MIS(M_{m \times n})|$ as functions of n all obey linear recurrences. Moreover, for each sequence $\tau(n)$, there exists real numbers c > 0 and r > 1 such that

$$\lim_{n\to\infty}\frac{\tau(n)}{c\cdot r^n}=1$$

Proof:

Theorem (Perron (1907), Frobenius (1912))

Let A be a primitive square matrix. Then, A has a Perron-Frobenius eigenvalue r, i.e. an eigenvalue equal to its spectral radius, such that the left and right eigenspaces of r are generated by single strictly positive vectors \vec{w}^{\top} and \vec{v} respectively. Moreover

$$\lim_{n\to\infty}\frac{A^n}{r^n}=\frac{\vec{v}\vec{w}^{\top}}{\vec{w}^{\top}\vec{v}}$$

Proof:

Theorem (Perron (1907), Frobenius (1912) - application)

 A_M is a primitive square matrix. Thus, A_M has a Perron-Frobenius eigenvalue r, i.e. an eigenvalue equal to its spectral radius, such that the left and right eigenspaces of r are generated by single strictly positive vectors \vec{w}^{\top} and \vec{v} respectively. Moreover

$$\lim_{n\to\infty}\frac{A_M^n}{r^n}=\frac{\vec{v}\vec{w}^{\top}}{\vec{w}^{\top}\vec{v}}$$

$$\lim_{n\to\infty}\frac{\tau(n)}{r^n}=\lim_{n\to\infty}\frac{A_T\bullet A_M^n}{r^n}=A_T\bullet\lim_{n\to\infty}\frac{A_M^n}{r^n}=A_T\bullet\frac{\vec{v}\vec{w}^\top}{\vec{w}^\top\vec{v}}=c$$

Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

'n

$$\lim_{n\to\infty}\frac{|\operatorname{MIS}((H\square P_{n+1})/\varphi)|}{r^n}=1$$

Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

'n

$$\lim_{n\to\infty}\frac{|\operatorname{MIS}((H\square P_{n+1})/\varphi)|}{r^n}=1$$

Proof:

• Note that quotienting out by the ϕ does not affect the map digraph. It only affects which pairs of states an MIS can start and end in.

Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

ñ

$$\lim_{\to\infty}\frac{|\operatorname{MIS}((H\Box P_{n+1})/\varphi)|}{r^n}=1$$

- Note that quotienting out by the ϕ does not affect the map digraph. It only affects which pairs of states an MIS can start and end in.
- When $\varphi = id$, an MIS which starts in state *i* must end in precisely state *i* after *n* steps through *M*.

Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

'n

$$\lim_{n\to\infty}\frac{|\operatorname{MIS}((H\square P_{n+1})/\varphi)|}{r^n}=1$$

- Note that quotienting out by the ϕ does not affect the map digraph. It only affects which pairs of states an MIS can start and end in.
- When $\varphi = id$, an MIS which starts in state *i* must end in precisely state *i* after *n* steps through *M*.

Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

$$\lim_{n\to\infty}\frac{|\operatorname{MIS}((H\Box P_{n+1})/\varphi)|}{r^n}=1$$

- Note that quotienting out by the φ does not affect the map digraph. It only affects which pairs of states an MIS can start and end in.
- When $\varphi = id$, an MIS which starts in state *i* must end in precisely state *i* after *n* steps through *M*.

Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

$$\lim_{n\to\infty}\frac{|\operatorname{MIS}((H\square P_{n+1})/\varphi)|}{r^n}=1$$

- Note that quotienting out by the ϕ does not affect the map digraph. It only affects which pairs of states an MIS can start and end in.
- When $\varphi = id$, an MIS which starts in state *i* must end in precisely state *i* after *n* steps through *M*.
- Likewise, for any φ, an MIS which starts in state *i* must end in precisely state φ(*i*) after *n* steps. Say in the following example, φ(v_i) = v_{i+1}.

Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

'n

$$\lim_{n\to\infty}\frac{|\operatorname{MIS}((H\square P_{n+1})/\varphi)|}{r^n}=1$$

- Note that quotienting out by the ϕ does not affect the map digraph. It only affects which pairs of states an MIS can start and end in.
- When $\varphi = id$, an MIS which starts in state *i* must end in precisely state *i* after *n* steps through *M*.
- Likewise, for any φ, an MIS which starts in state *i* must end in precisely state φ(*i*) after *n* steps. Say in the following example, φ(v_i) = v_{i+1}.

Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

'n

$$\lim_{\to\infty}\frac{|\operatorname{MIS}((H\Box P_{n+1})/\varphi)|}{r^n}=1$$

- Note that quotienting out by the ϕ does not affect the map digraph. It only affects which pairs of states an MIS can start and end in.
- When $\varphi = id$, an MIS which starts in state *i* must end in precisely state *i* after *n* steps through *M*.
- Likewise, for any φ, an MIS which starts in state *i* must end in precisely state φ(*i*) after *n* steps. Say in the following example, φ(v_i) = v_{i+1}.

Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

$$\lim_{n\to\infty}\frac{|\mathsf{MIS}((H\Box P_{n+1})/\varphi)|}{r^n}=1$$

- Note that quotienting out by the ϕ does not affect the map digraph. It only affects which pairs of states an MIS can start and end in.
- When $\varphi = id$, an MIS which starts in state *i* must end in precisely state *i* after *n* steps through *M*.
- Likewise, for any φ, an MIS which starts in state *i* must end in precisely state φ(*i*) after *n* steps. Say in the following example, φ(v_i) = v_{i+1}.
- Thus, only the ticket digraph of G is affected.
Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

$$\lim_{n\to\infty}\frac{|\mathsf{MIS}((H\Box P_{n+1})/\varphi)|}{r^n}=1$$

Proof:

• Let $A_{T_{\phi}}$ be the induced ticket digraph. It is a permutation matrix with 1s at $(i, \phi(i))$. Sufficient to show that c = 1.

$$c = A_{T_{\varphi}} \bullet \frac{\vec{v} \vec{w}^{\top}}{\vec{w}^{\top} \vec{v}} = \sum_{1 \le i \le m} \frac{\vec{v}_i \vec{w}_{\varphi(i)}}{\vec{w}^{\top} \vec{v}}$$

Theorem (Main Result)

Let $H = P_m$ or C_m and let φ be a graph automorphism of H. Let r be the principle eigenvalue of the map digraph M of H. Then,

$$\lim_{n\to\infty}\frac{|\mathsf{MIS}((H\Box P_{n+1})/\varphi)|}{r^n}=1$$

Proof:

• Let $A_{T_{\phi}}$ be the induced ticket digraph. It is a permutation matrix with 1s at $(i, \phi(i))$. Sufficient to show that c = 1.

$$c = A_{T_{\varphi}} \bullet \frac{\vec{v} \vec{w}^{\top}}{\vec{w}^{\top} \vec{v}} = \sum_{1 \le i \le m} \frac{\vec{v}_i \vec{w}_{\varphi(i)}}{\vec{w}^{\top} \vec{v}}$$

• What does $\vec{w}_{\varphi(i)}^{\top}$ look like?

Proof:

- What does $\vec{w}_{\varphi(i)}^{\top}$ look like?
 - The graph automorphism φ induces a permutation matrix $P = \begin{pmatrix} \begin{cases} 1 & \text{if } j = \varphi(i) \\ 0 & \text{otherwise} \end{pmatrix}_{ij} \end{pmatrix}$.

Proof:

- What does $\vec{w}_{\varphi(i)}^{ op}$ look like?
 - The graph automorphism φ induces a permutation matrix $P = \begin{pmatrix} \begin{cases} 1 & \text{if } j = \varphi(i) \\ 0 & \text{otherwise} \end{cases}_{ii} \end{cases}$.
 - We show that the permutation matrix corresponding to φ commutes with the adjacency matrix of the graph φ acts on.

$$(PA)_{ij} = \left(\sum_{k} P_{ik} A_{kj}\right)_{ij} = A_{\phi(i)j} = A_{i\phi^{-1}(j)} = \left(\sum_{k} A_{ik} P_{kj}\right)_{ij} = (AP)_{ij}$$

Proof:

- What does $\vec{w}_{\varphi(i)}^{ op}$ look like?
 - The graph automorphism φ induces a permutation matrix $P = \begin{pmatrix} \begin{cases} 1 & \text{if } j = \varphi(i) \\ 0 & \text{otherwise} \end{pmatrix}_{ij} \end{pmatrix}$.
 - We show that the permutation matrix corresponding to φ commutes with the adjacency matrix of the graph φ acts on.

$$(PA)_{ij} = \left(\sum_{k} P_{ik} A_{kj}\right)_{ij} = A_{\varphi(i)j} = A_{i\varphi^{-1}(j)} = \left(\sum_{k} A_{ik} P_{kj}\right)_{ij} = (AP)_{ij}$$

• We can show that $w^{\top}P$ is a left eigenvector of A corresponding to the principle eigenvalue.

$$(w^{\top}P)A = w^{\top}(PA) = (w^{\top}A)P = rw^{\top}P = r \cdot w^{\top}P$$

Proof:

• What does $\vec{w}_{\varphi(i)}$ look like? ($w^{\top} P$ is an eigenvector of A)

Proof:

- What does $\vec{w}_{\varphi(i)}$ look like? ($w^{\top} P$ is an eigenvector of A)
 - · Recall the dimension of the left eigenspace is 1, so

 $w^{\top} P = w^{\top} t$ for some $t \in \mathbb{R}$

where w^{\top} is the strictly positive generator of the left eigenspace.

Proof:

- What does $\vec{w}_{\varphi(i)}$ look like? ($w^{\top} P$ is an eigenvector of A)
 - · Recall the dimension of the left eigenspace is 1, so

 $w^{\top} P = w^{\top} t$ for some $t \in \mathbb{R}$

where w^{\top} is the strictly positive generator of the left eigenspace.

• $w^{\top}P$ permutes the elements of w^{\top} , so $||w^{\top}P|| = ||w^{\top}||$.

Proof:

- What does $\vec{w}_{\varphi(i)}$ look like? ($w^{\top}P$ is an eigenvector of A)
 - · Recall the dimension of the left eigenspace is 1, so

 $w^{\top} P = w^{\top} t$ for some $t \in \mathbb{R}$

where w^{\top} is the strictly positive generator of the left eigenspace.

• $w^{\top}P$ permutes the elements of w^{\top} , so $||w^{\top}P|| = ||w^{\top}||$.

• Thus,
$$t = 1$$
. $w^{\top} P = w^{\top}$, and $w_{\varphi(i)} = w_i$

Proof:

- What does $\vec{w}_{\varphi(i)}$ look like? ($w^{\top}P$ is an eigenvector of A)
 - · Recall the dimension of the left eigenspace is 1, so

 $w^{\top} P = w^{\top} t$ for some $t \in \mathbb{R}$

where w^{\top} is the strictly positive generator of the left eigenspace.

• $w^{\top}P$ permutes the elements of w^{\top} , so $||w^{\top}P|| = ||w^{\top}||$.

• Thus,
$$t = 1$$
. $w^{\top} P = w^{\top}$, and $w_{\varphi(i)} = w_i$

· Therefore,

$$c = A_{T_{\varphi}} \bullet \frac{\vec{v} \vec{w}^{\top}}{\vec{w}^{\top} \vec{v}} = \sum_{1 \le i \le m} \frac{\vec{v}_{\varphi(i)} \vec{w}_i}{\vec{w}^{\top} \vec{v}}$$
$$= \sum_{1 \le i \le m} \frac{\vec{v}_i \vec{w}_i}{\vec{w}^{\top} \vec{v}} = 1$$

Conjecture

For sufficiently large m,

$$\lim_{n\to\infty}\frac{|\operatorname{MIS}(G_{m\times n})|}{|\operatorname{MIS}(FC_{m\times n})|} > 1$$

Conjecture

For sufficiently large m,

$$\lim_{n\to\infty}\frac{|\operatorname{MIS}(G_{m\times n})|}{|\operatorname{MIS}(FC_{m\times n})|}>1$$

Conjecture

The following sequence is monotonically increasing.

$$\left\{\lim_{n\to\infty}\frac{|\operatorname{MIS}(G_{m\times n})|}{|\operatorname{MIS}(FC_{m\times n})|}\right\}_{m\in\mathbb{N}}$$

Conjecture

For sufficiently large m,

$$\lim_{n\to\infty}\frac{|\operatorname{MIS}(G_{m\times n})|}{|\operatorname{MIS}(FC_{m\times n})|}>1$$

Conjecture

The following sequence is monotonically increasing.

$$\left\{\lim_{n\to\infty}\frac{|\operatorname{MIS}(G_{m\times n})|}{|\operatorname{MIS}(FC_{m\times n})|}\right\}_{m\in\mathbb{N}}$$

Thank you!

· Can we count only those MISs which are distinct in terms of rotation and reflection?

- · Can we count only those MISs which are distinct in terms of rotation and reflection?
- This is a good place to start in looking to form more precise arguments about symmetries.

- · Can we count only those MISs which are distinct in terms of rotation and reflection?
- This is a good place to start in looking to form more precise arguments about symmetries.

Definition (NIMIS(G))

Two elements I, I' are *isomorphic* if there exists a graph automorphism $\varphi : G \to G$ with $\varphi(I) = I'$ and *non-isomorphic* if no such φ exists. Denote the set of non-isomorphic MISs on G by NIMIS(G).

- · Can we count only those MISs which are distinct in terms of rotation and reflection?
- This is a good place to start in looking to form more precise arguments about symmetries.

Definition (NIMIS(G))

Two elements *I*, *I'* are *isomorphic* if there exists a graph automorphism $\varphi : G \to G$ with $\varphi(I) = I'$ and *non-isomorphic* if no such φ exists. Denote the set of non-isomorphic MISs on *G* by NIMIS(*G*).

 In general, we can use the group of symmetries of our graph to act on the set of MISs. The number of distinct orbits of MIS(G) counts |NIMIS(G)|.

Definition (Bit String Map)

Let ψ : MIS($G_{2 \times n}$) \rightarrow {0,1}ⁿ be defined by

$$\psi(M)(i) = \begin{cases} 1 & \text{if } (i,1) \in M \text{ or } (i,2 \in M) \\ 0 & \text{if } (i,1) \notin M \text{ and } (i,2 \notin M) \end{cases}$$

for every $1 \le i \le n$ and every $M \in MIS(G_{2 \times n})$

Definition (Bit String Map)

Let ψ : MIS $(G_{2 \times n}) \rightarrow \{0,1\}^n$ be defined by

$$\psi(M)(i) = \begin{cases} 1 & \text{if } (i,1) \in M \text{ or } (i,2 \in M) \\ 0 & \text{if } (i,1) \notin M \text{ and } (i,2 \notin M) \end{cases}$$

for every $1 \le i \le n$ and every $M \in MIS(G_{2 \times n})$

- Note ψ maps precisely 2 MISs to some element in its range. These MISs are duals (from before).

Definition (Bit String Map)

Let ψ : MIS $(G_{2 \times n}) \rightarrow \{0,1\}^n$ be defined by

$$\Psi(M)(i) = \begin{cases} 1 & \text{if } (i,1) \in M \text{ or } (i,2 \in M) \\ 0 & \text{if } (i,1) \notin M \text{ and } (i,2 \notin M) \end{cases}$$

for every $1 \le i \le n$ and every $M \in MIS(G_{2 \times n})$

- Note ψ maps precisely 2 MISs to some element in its range. These MISs are duals (from before).

Theorem

For $n \ge 3$,

$$|\text{NIMIS}(G_{2\times n})| = \begin{cases} \frac{1}{2}(F_n + F_{n/2}) & \text{if n if even} \\ \frac{1}{2}(F_n + F_{(n+3)/2}) & \text{if n if odd} \end{cases}$$

Theorem

For $n \ge 3$,

$$|\text{NIMIS}(G_{2\times n})| = \begin{cases} \frac{1}{2}(F_n + F_{n/2}) & \text{if n if even} \\ \frac{1}{2}(F_n + F_{(n+3)/2}) & \text{if n if odd} \end{cases}$$

Proof (sketch, odd n):

• $\psi(|MIS(G_{2\times n})|) = F_n$

Theorem

For $n \geq 3$,

$$|\operatorname{NIMIS}(G_{2\times n})| = \begin{cases} \frac{1}{2}(F_n + F_{n/2}) & \text{if n if even} \\ \frac{1}{2}(F_n + F_{(n+3)/2}) & \text{if n if odd} \end{cases}$$

Proof (sketch, odd n):

- $\psi(|MIS(G_{2\times n})|) = F_n$
- Size of orbit of an MIS must divide the group of symmetries on a rectangular grid (Orbit-Stabilizer Theorem). An MIS must have either an orbit of size 2 or 4.

Theorem

For $n \geq 3$,

$$|\text{NIMIS}(G_{2 \times n})| = \begin{cases} \frac{1}{2}(F_n + F_{n/2}) & \text{if n if even} \\ \frac{1}{2}(F_n + F_{(n+3)/2}) & \text{if n if odd} \end{cases}$$

Proof (sketch, odd n):

- $\psi(|MIS(G_{2\times n})|) = F_n$
- Size of orbit of an MIS must divide the group of symmetries on a rectangular grid (Orbit-Stabilizer Theorem). An MIS must have either an orbit of size 2 or 4.
- · Symmetric bit strings are exactly those with orbit 4.

Theorem

For $n \geq 3$,

$$|\text{NIMIS}(G_{2\times n})| = \begin{cases} \frac{1}{2}(F_n + F_{n/2}) & \text{if n if even} \\ \frac{1}{2}(F_n + F_{(n+3)/2}) & \text{if n if odd} \end{cases}$$

Proof (sketch, odd n):

- $\psi(|MIS(G_{2\times n})|) = F_n$
- Size of orbit of an MIS must divide the group of symmetries on a rectangular grid (Orbit-Stabilizer Theorem). An MIS must have either an orbit of size 2 or 4.
- · Symmetric bit strings are exactly those with orbit 4.
- Double-count:

$$|NIMIS(G_{2\times n})| = \frac{1}{2}(F_n + \text{number of distinct symmetric strings})$$

Theorem

For $n \ge 3$,

$$|\text{NIMIS}(G_{2\times n})| = \begin{cases} \frac{1}{2}(F_n + F_{n/2}) & \text{if n if even} \\ \frac{1}{2}(F_n + F_{(n+3)/2}) & \text{if n if odd} \end{cases}$$

Proof (sketch, odd n):

- $\psi(|MIS(G_{2\times n})|) = F_n$
- Size of orbit of an MIS must divide the group of symmetries on a rectangular grid (Orbit-Stabilizer Theorem). An MIS must have either an orbit of size 2 or 4.
- Symmetric bit strings are exactly those with orbit 4.
- Double-count:

$$|NIMIS(G_{2\times n})| = \frac{1}{2}(F_n + \text{number of distinct symmetric strings})$$

Number of distinct symmetric strings:

$$F_{(n+1)/2} + F_{(n-1)/2}$$